61 research outputs found

    Camera motion estimation through planar deformation determination

    Get PDF
    In this paper, we propose a global method for estimating the motion of a camera which films a static scene. Our approach is direct, fast and robust, and deals with adjacent frames of a sequence. It is based on a quadratic approximation of the deformation between two images, in the case of a scene with constant depth in the camera coordinate system. This condition is very restrictive but we show that provided translation and depth inverse variations are small enough, the error on optical flow involved by the approximation of depths by a constant is small. In this context, we propose a new model of camera motion, that allows to separate the image deformation in a similarity and a ``purely'' projective application, due to change of optical axis direction. This model leads to a quadratic approximation of image deformation that we estimate with an M-estimator; we can immediatly deduce camera motion parameters.Comment: 21 pages, version modifi\'ee accept\'e le 20 mars 200

    EKF-Based Recursive Dual Estimation of Structure&Motion from Stereo Data

    No full text
    Extended Kalman filters (EKF) have been proposed to estimate ego-motion and to recursively update scene structure in the form of 3-D positions of selected prominent features from motion and stereo sequences. Previous methods typically accommodate no more than a few dozen features for real-time processing. To maintain motion estimation accuracy, this calls for high contrast images to compute image feature locations with precision. Within manmade environments, various prominent corner points exist that can be extracted and tracked with required accuracy. However, prominent features are more difficult to localize precisely in natural scenes. Statistically, more feature points become necessary to maintain the same level of motion estimation accuracy and robustness. However, this imposes a computational burden beyond the capability of EKF-based techniques for real-time processing. A sequential dual EKF estimator utilizing stereo data is proposed for improved computation efficiency. Two important issues, unbiased estimation and stochastic stability are addressed. Furthermore, the dynamic feature set is handled in a more effective, efficient and robust way. Experimental results to demonstrate the merits of the new theoretical and algorithmic developments are presented

    Positioning and Photo-Mosaicking with Long Image Sequences; Comparison of Selected Methods

    No full text
    Despite limited range, high resolution and data rate are among factors motivating the investigation of vision-based technologies in support of unmanned submersible platform operations. Among many, automatic vision-guided station keeping, localization and navigation, photo-mosaicking and 3-D mapping comprise application areas of special interest. The core issue in realizing these capabilities is to know with high accuracy the motion and (or) position of the vehicle
    corecore